Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 24(7)2023 Mar 26.
Article in English | MEDLINE | ID: covidwho-2291431

ABSTRACT

Post-acute conditions after coronavirus disease 2019 (COVID-19) are quite common, although the underlying pathogenetic mechanisms leading to these conditions are not yet completely understood. In this prospective observational study, we aimed to test the hypothesis that Growth Arrest-Specific 6 (Gas6) and its soluble receptors, Axl (sAxl) and MerTK (sMer), might be implicated. A total of 263 subjects underwent a structured clinical evaluation one year after their hospital discharge for COVID-19, and they consented to donate a blood sample to measure their circulating Gas6, sAxl, and sMer levels. A total of 98 (37.3%) post-COVID-19 subjects complained of at least one residual physical symptom one year after their hospital discharge. Univariate analysis revealed that sAxl was marginally associated with residual symptoms, but at the level of logistic regression analysis, only the diffusing capacity of the lungs for carbon monoxide (DLCO) (OR 0.98, CI 95%: 0.96-0.99; p = 0.007) and the female sex (OR 2.49, CI 95%: 1.45-4.28; p = 0.001) were independently associated with long-lasting symptoms. A total of 69 (26.2%) subjects had hair loss. At the level of univariate analysis, Gas6, sAxl, DLCO, and the female gender were associated with its development. In a logistic regression analysis model, Gas6 (OR 0.96, CI 95%: 0.92-0.99; p = 0.015) and sAxl (OR 0.98, CI 95%; 0.97-1.0; p = 0.014), along with the female sex (OR 6.58, CI 95%: 3.39-12.78; p = 0.0001), were independent predictors of hair loss. Decreased levels of Gas6 and sAxl were associated with a history of hair loss following COVID-19. This was resolved spontaneously in most patients, although 23.7% complained of persistent hair loss one year after hospital discharge.


Subject(s)
COVID-19 , Proto-Oncogene Proteins , Female , Humans , c-Mer Tyrosine Kinase , COVID-19/complications , Intercellular Signaling Peptides and Proteins , Receptor Protein-Tyrosine Kinases
2.
Front Immunol ; 14: 1168455, 2023.
Article in English | MEDLINE | ID: covidwho-2293617

ABSTRACT

Even though cancer patients are generally considered more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the mechanisms driving their predisposition to severe forms of coronavirus disease 2019 (COVID-19) have not yet been deciphered. Since metabolic disorders are associated with homeostatic frailty, which increases the risk of infection and cancer, we asked whether we could identify immunometabolic pathways intersecting with cancer and SARS-CoV-2 infection. Thanks to a combined flow cytometry and multiomics approach, here we show that the immunometabolic traits of COVID-19 cancer patients encompass alterations in the frequency and activation status of circulating myeloid and lymphoid subsets, and that these changes are associated with i) depletion of tryptophan and its related neuromediator tryptamine, ii) accumulation of immunosuppressive tryptophan metabolites (i.e., kynurenines), and iii) low nicotinamide adenine dinucleotide (NAD+) availability. This metabolic imbalance is accompanied by altered expression of inflammatory cytokines in peripheral blood mononuclear cells (PBMCs), with a distinctive downregulation of IL-6 and upregulation of IFNγ mRNA expression levels. Altogether, our findings indicate that cancer not only attenuates the inflammatory state in COVID-19 patients but also contributes to weakening their precarious metabolic state by interfering with NAD+-dependent immune homeostasis.


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19/metabolism , SARS-CoV-2 , Leukocytes, Mononuclear , NAD/metabolism , Tryptophan/metabolism , Neoplasms/metabolism
3.
Int J Environ Res Public Health ; 20(2)2023 Jan 14.
Article in English | MEDLINE | ID: covidwho-2227868

ABSTRACT

Whilst the impact of coronavirus disease 2019 (COVID-19) on the host proteome, metabolome, and lipidome has been largely investigated in different bio-fluids, to date, the circulating peptidome remains unexplored. Thus, the present study aimed to apply an untargeted peptidomic approach to provide insight into alterations of circulating peptides in the development and severity of SARS-CoV-2 infection. The circulating peptidome from COVID-19 severe and mildly symptomatic patients and negative controls was characterized using LC-MS/MS analysis for identification and quantification purposes. Database search and statistical analysis allowed a complete characterization of the plasma peptidome and the detection of the most significant modulated peptides that were impacted by the infection. Our results highlighted not only that peptide abundance inversely correlates with disease severity, but also the involvement of biomolecules belonging to inflammatory, immune-response, and coagulation proteins/processes. Moreover, our data suggested a possible involvement of changes in protein degradation patterns. In the present research, for the first time, the untargeted peptidomic approach enabled the identification of circulating peptides potentially playing a crucial role in the progression of COVID-19.


Subject(s)
COVID-19 , Humans , Chromatography, Liquid , Tandem Mass Spectrometry/methods , SARS-CoV-2 , Peptides
4.
Front Immunol ; 13: 1038227, 2022.
Article in English | MEDLINE | ID: covidwho-2198883

ABSTRACT

Rationale: Factors associated with long-term sequelae emerging after the acute phase of COVID-19 (so called "long COVID") are unclear. Here, we aimed to identify risk factors for the development of COVID-19 sequelae in a prospective cohort of subjects hospitalized for SARS-CoV-2 infection and followed up one year after discharge. Methods: A total of 324 subjects underwent a comprehensive and multidisciplinary evaluation one year after hospital discharge for COVID-19. A subgroup of 247/324 who consented to donate a blood sample were tested for a panel of circulating cytokines. Results: In 122 patients (37.8%) there was evidence of at least one persisting physical symptom. After correcting for comorbidities and COVID-19 severity, the risk of developing long COVID was lower in the 109 subjects admitted to the hospital in the third wave of the pandemic than in the 215 admitted during the first wave, (OR 0.69, 95%CI 0.51-0.93, p=0.01). Univariable analysis revealed female sex, diffusing capacity of the lungs for carbon monoxide (DLCO) value, body mass index, anxiety and depressive symptoms to be positively associated with COVID-19 sequelae at 1 year. Following logistic regression analysis, DLCO was the only independent predictor of residual symptoms (OR 0.98 CI 95% (0.96-0.99), p=0.01). In the subgroup of subjects with normal DLCO (> 80%), for whom residual lung damage was an unlikely explanation for long COVID, the presence of anxiety and depressive symptoms was significantly associated to persistent symptoms, together with increased levels of a set of pro-inflammatory cytokines: interferon-gamma, tumor necrosis factor-alpha, interleukin (IL)-2, IL-12, IL-1ß, IL-17. In logistic regression analysis, depressive symptoms (p=0.02, OR 4.57 [1.21-17.21]) and IL-12 levels (p=0.03, OR 1.06 [1.00-1.11]) 1-year after hospital discharge were independently associated with persistence of symptoms. Conclusions: Long COVID appears mainly related to respiratory sequelae, prevalently observed during the first pandemic wave. Among patients with little or no residual lung damage, a cytokine pattern consistent with systemic inflammation is in place.


Subject(s)
COVID-19 , Humans , Adult , Female , Prospective Studies , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Interleukin-12 , Cytokines , Disease Progression
5.
Dis Markers ; 2022: 8074655, 2022.
Article in English | MEDLINE | ID: covidwho-1927678

ABSTRACT

Platelet-derived extracellular vesicles (PLT-EVs), the most abundant circulating EVs, have been found to be increased in several human diseases, including viral infections. Recently, we documented that PLT-EV counts are higher in SARS-CoV-2+ patients, enrolled during the first two waves of COVID-19, occurred in Italy last year, and we suggested PLT-EVs as a biomarker of SARS-CoV-2 infection. The present study is aimed at testing the ability of PLT-EV levels, measured at hospital admission and within one week of hospitalization, to predict patient's outcome. We applied an easy, fast, and reliable method, based on flow cytometry, for the detection of PLT-EVs in unmanipulated blood samples. In a cohort of SARS-CoV-2 patients, enrolled during the third wave of COVID-19 in Italy, we confirmed that PLT-EV counts are higher in comparison to healthy controls. Moreover, their number is not affected by prehospitalization treatment neither with heparin nor with steroids that are recommended by WHO guidelines. Noteworthy, we identified two pattern of patients, those who increased their PTL-EV level during first week and those reducing it. The former group representented more compromised patients, with higher 4C score, and unfavorable outcome. In conclusion, our new findings would suggest that a worse evolution of the disease is linked with increasing PLT-EV levels in the week after hospital admission.


Subject(s)
COVID-19 , Extracellular Vesicles , Blood Platelets , Humans , Prognosis , SARS-CoV-2
6.
Metabolites ; 11(12)2021 Dec 06.
Article in English | MEDLINE | ID: covidwho-1554799

ABSTRACT

Infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe respiratory tract damage and acute lung injury. Therefore, it is crucial to study breath-associated biofluids not only to investigate the breath's biochemical changes caused by SARS-CoV-2 infection, but also to discover potential biomarkers for the development of new diagnostic tools. In the present study, we performed an untargeted metabolomics approach using a bidimensional gas chromatography mass spectrometer (GCxGC-TOFMS) on exhaled breath condensate (EBC) from COVID-19 patients and negative healthy subjects to identify new potential biomarkers for the noninvasive diagnosis and monitoring of the COVID-19 disease. The EBC analysis was further performed in patients with acute or acute-on-chronic cardiopulmonary edema (CPE) to assess the reliability of the identified biomarkers. Our findings demonstrated that an abundance of EBC fatty acids can be used to discriminate COVID-19 patients and that they may have a protective effect, thus suggesting their potential use as a preventive strategy against the infection.

7.
Sci Rep ; 11(1): 22666, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528025

ABSTRACT

Many coronavirus disease 2019 (Covid-19) survivors show symptoms months after acute illness. The aim of this work is to describe the clinical evolution of Covid-19, one year after discharge. We performed a prospective cohort study on 238 patients previously hospitalized for Covid-19 pneumonia in 2020 who already underwent clinical follow-up 4 months post-Covid-19. 200 consented to participate to a 12-months clinical assessment, including: pulmonary function tests with diffusing lung capacity for carbon monoxide (DLCO); post-traumatic stress (PTS) symptoms evaluation by the Impact of Event Scale (IES); motor function evaluation (by Short Physical Performance Battery and 2 min walking test); chest Computed Tomography (CT). After 366 [363-369] days, 79 patients (39.5%) reported at least one symptom. A DLCO < 80% was observed in 96 patients (49.0%). Severe DLCO impairment (< 60%) was reported in 20 patients (10.2%), related to extent of CT scan abnormalities. Some degree of motor impairment was observed in 25.8% of subjects. 37/200 patients (18.5%) showed moderate-to-severe PTS symptoms. In the time elapsed from 4 to 12 months after hospital discharge, motor function improves, while respiratory function does not, being accompanied by evidence of lung structural damage. Symptoms remain highly prevalent one year after acute illness.


Subject(s)
COVID-19/complications , Hospitalization , Aged , COVID-19/diagnosis , COVID-19/diagnostic imaging , COVID-19/epidemiology , Carbon Monoxide/metabolism , Female , Humans , Italy/epidemiology , Logistic Models , Male , Mental Health , Middle Aged , Motor Activity , Patient Acuity , Patient Discharge , Prevalence , Prospective Studies , Pulmonary Diffusing Capacity , Respiratory Function Tests , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/etiology , Survivors , Tomography, X-Ray Computed , Walk Test , Post-Acute COVID-19 Syndrome
8.
J Autoimmun ; 124: 102728, 2021 11.
Article in English | MEDLINE | ID: covidwho-1440155

ABSTRACT

Extremely rare reactions characterized by thrombosis and thrombocytopenia have been described in subjects that received ChAdOx1 nCoV-19 vaccination 5-16 days earlier. Although patients with vaccine-induced thrombotic thrombocytopenia (VITT) have high levels of antibodies to platelet factor 4 (PF4)-polyanion complexes, the exact mechanism of the development of thrombosis is still unknown. Here we reported serum studies as well as proteomics and genomics analyses demonstrating a massive complement activation potentially linked to the presence of anti-PF4 antibodies in a patient with severe VITT. At admission, complement activity of the classical and lectin pathways were absent (0% for both) with normal levels of the alternative pathway (73%) in association with elevated levels of the complement activation marker sC5b-9 (630 ng/mL [n.v. 139-462 ng/mL]) and anti-PF4 IgG (1.918 OD [n.v. 0.136-0.300 OD]). The immunoblotting analysis of C2 showed the complete disappearance of its normal band at 110 kDa. Intravenous immunoglobulin treatment allowed to recover complement activity of the classical pathway (91%) and lectin pathway (115%), to reduce levels of sC5b-9 (135 ng/mL) and anti-PF4 IgG (0.681 OD) and to normalize the C2 pattern at immunoblotting. Proteomics and genomics analyses in addition to serum studies showed that the absence of complement activity during VITT was not linked to alterations of the C2 gene but rather to a strong complement activation leading to C2 consumption. Our data in a single patient suggest monitoring complement parameters in other VITT patients considering also the possibility to target complement activation with specific drugs.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Complement C2 , Complement Membrane Attack Complex , Complement Pathway, Classical , Complement Pathway, Mannose-Binding Lectin , Purpura, Thrombotic Thrombocytopenic , SARS-CoV-2 , Adult , Autoantibodies/blood , COVID-19 Vaccines/administration & dosage , ChAdOx1 nCoV-19 , Complement C2/genetics , Complement C2/metabolism , Complement Membrane Attack Complex/genetics , Complement Membrane Attack Complex/metabolism , Complement Pathway, Classical/drug effects , Complement Pathway, Classical/genetics , Complement Pathway, Mannose-Binding Lectin/drug effects , Complement Pathway, Mannose-Binding Lectin/genetics , Female , Humans , Platelet Factor 4/blood , Purpura, Thrombotic Thrombocytopenic/blood , Purpura, Thrombotic Thrombocytopenic/chemically induced , Purpura, Thrombotic Thrombocytopenic/genetics
9.
Sci Rep ; 11(1): 13796, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1297316

ABSTRACT

The COVID-19 pandemic is still raging in most countries. Although the recent mass vaccination campaign has opened a new chapter in the battle against SARS-CoV-2, the world is still far from herd immunity. There is an urgent need to identify healthy people at high risk of contracting COVID-19, as well as supplements and nutraceuticals that can reduce the risk of infection or mitigate symptoms. In the present study, a metabolic phenotype that could protect individuals from SARS-CoV-2 infection or predispose them to developing COVID-19 was investigated. Untargeted metabolomics was performed on serum samples collected from 51 healthcare workers who were in good health at the beginning of the COVID-19 outbreak in Italy, and who were later exposed to the same risk of developing COVID-19. Half of them developed COVID-19 within three weeks of the blood collection. Our results demonstrate the presence of a specific signature associated with protection from SARS-CoV-2. Circulating monolaurin, which has well-known antiviral and antibacterial properties, was higher in protected subjects, suggesting a potential defensive role against SARS-CoV-2 infection; thus, dietary supplements could boost the immune system against this infection. In addition, our data demonstrate that people with higher levels of cholesterol are at higher risk of developing COVID-19. The present study demonstrates that metabolomics can be of great help for developing personalized medicine and for supporting public healthcare strategies. Studies with larger cohorts of subjects are necessary to confirm our findings.


Subject(s)
COVID-19/prevention & control , Disease Outbreaks/prevention & control , Metabolomics , SARS-CoV-2/pathogenicity , Antiviral Agents/therapeutic use , COVID-19/epidemiology , Health Personnel/statistics & numerical data , Humans , Immunity, Herd/physiology , Italy
10.
Front Mol Biosci ; 8: 632290, 2021.
Article in English | MEDLINE | ID: covidwho-1127989

ABSTRACT

Knowledge of the host response to the novel coronavirus SARS-CoV-2 remains limited, hindering the understanding of COVID-19 pathogenesis and the development of therapeutic strategies. During the course of a viral infection, host cells release exosomes and other extracellular vesicles carrying viral and host components that can modulate the immune response. The present study used a shotgun proteomic approach to map the host circulating exosomes' response to SARS-CoV-2 infection. We investigated how SARS-CoV-2 infection modulates exosome content, exosomes' involvement in disease progression, and the potential use of plasma exosomes as biomarkers of disease severity. A proteomic analysis of patient-derived exosomes identified several molecules involved in the immune response, inflammation, and activation of the coagulation and complement pathways, which are the main mechanisms of COVID-19-associated tissue damage and multiple organ dysfunctions. In addition, several potential biomarkers-such as fibrinogen, fibronectin, complement C1r subcomponent and serum amyloid P-component-were shown to have a diagnostic feature presenting an area under the curve (AUC) of almost 1. Proteins correlating with disease severity were also detected. Moreover, for the first time, we identified the presence of SARS-CoV-2 RNA in the exosomal cargo, which suggests that the virus might use the endocytosis route to spread infection. Our findings indicate circulating exosomes' significant contribution to several processes-such as inflammation, coagulation, and immunomodulation-during SARS-CoV-2 infection. The study's data are available via ProteomeXchange with the identifier PXD021144.

11.
Prog Lipid Res ; 82: 101092, 2021 04.
Article in English | MEDLINE | ID: covidwho-1074905

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that has infected over a hundred million people globally. There have been more than two million deaths recorded worldwide, with no end in sight until a widespread vaccination will be achieved. Current research has centred on different aspects of the virus interaction with cell surface receptors, but more needs to be done to further understand its mechanism of action in order to develop a targeted therapy and a method to control the spread of the virus. Lipids play a crucial role throughout the viral life cycle, and viruses are known to exploit lipid signalling and synthesis to affect host cell lipidome. Emerging studies using untargeted metabolomic and lipidomic approaches are providing new insight into the host response to COVID-19 infection. Indeed, metabolomic and lipidomic approaches have identified numerous circulating lipids that directly correlate to the severity of the disease, making lipid metabolism a potential therapeutic target. Circulating lipids play a key function in the pathogenesis of the virus and exert an inflammatory response. A better knowledge of lipid metabolism in the host-pathogen interaction will provide valuable insights into viral pathogenesis and to the development of novel therapeutic targets.


Subject(s)
COVID-19/metabolism , Lipid Metabolism , COVID-19/epidemiology , COVID-19/virology , Humans , Pandemics , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
12.
Cells ; 10(1)2021 01 07.
Article in English | MEDLINE | ID: covidwho-1028162

ABSTRACT

Sars-Cov-2 infection causes fever and cough that may rapidly lead to acute respiratory distress syndrome (ARDS). Few biomarkers have been identified but, unfortunately, these are individually poorly specific, and novel biomarkers are needed to better predict patient outcome. The aim of this study was to evaluate the diagnostic performance of circulating platelets (PLT)-derived extracellular vesicles (EVs) as biomarkers for Sars-Cov-2 infection, by setting a rapid and reliable test on unmanipulated blood samples. PLT-EVs were quantified by flow cytometry on two independent cohorts of Sars-CoV-2+ (n = 69), Sars-Cov-2- (n = 62) hospitalized patients, and healthy controls. Diagnostic performance of PLT-EVs was evaluated by receiver operating characteristic (ROC) curve. PLT-EVs count were higher in Sars-Cov-2+ compared to Sars-Cov-2- patients or HC. ROC analysis of the combined cohorts showed an AUC = 0.79 and an optimal cut-off value of 1472 EVs/µL, with 75% sensitivity and 74% specificity. These data suggest that PLT-EVs might be an interesting biomarker deserving further investigations to test their predictive power.


Subject(s)
Blood Platelets/metabolism , COVID-19/blood , Extracellular Vesicles/metabolism , Aged , Aged, 80 and over , Biomarkers/blood , Blood Platelets/pathology , COVID-19/epidemiology , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Predictive Value of Tests
13.
Int J Mol Sci ; 21(22)2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-927563

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every continent, registering over 1,250,000 deaths worldwide. The effects of SARS-CoV-2 on host targets remains largely limited, hampering our understanding of Coronavirus Disease 2019 (COVID-19) pathogenesis and the development of therapeutic strategies. The present study used a comprehensive untargeted metabolomic and lipidomic approach to capture the host response to SARS-CoV-2 infection. We found that several circulating lipids acted as potential biomarkers, such as phosphatidylcholine 14:0_22:6 (area under the curve (AUC) = 0.96), phosphatidylcholine 16:1_22:6 (AUC = 0.97), and phosphatidylethanolamine 18:1_20:4 (AUC = 0.94). Furthermore, triglycerides and free fatty acids, especially arachidonic acid (AUC = 0.99) and oleic acid (AUC = 0.98), were well correlated to the severity of the disease. An untargeted analysis of non-critical COVID-19 patients identified a strong alteration of lipids and a perturbation of phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, aminoacyl-tRNA degradation, arachidonic acid metabolism, and the tricarboxylic acid (TCA) cycle. The severity of the disease was characterized by the activation of gluconeogenesis and the metabolism of porphyrins, which play a crucial role in the progress of the infection. In addition, our study provided further evidence for considering phospholipase A2 (PLA2) activity as a potential key factor in the pathogenesis of COVID-19 and a possible therapeutic target. To date, the present study provides the largest untargeted metabolomics and lipidomics analysis of plasma from COVID-19 patients and control groups, identifying new mechanisms associated with the host response to COVID-19, potential plasma biomarkers, and therapeutic targets.


Subject(s)
Coronavirus Infections/metabolism , Metabolome , Pneumonia, Viral/metabolism , Aged , Aged, 80 and over , Amino Acids/blood , Arachidonic Acid/blood , Biomarkers/blood , COVID-19 , Citric Acid Cycle , Coronavirus Infections/blood , Coronavirus Infections/pathology , Female , Gluconeogenesis , Humans , Male , Middle Aged , Oleic Acid/blood , Pandemics , Phosphatidylcholines/blood , Phosphatidylethanolamines/blood , Phospholipases A2/blood , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL